(4x+3)(4x+3)=196+4x^2

Simple and best practice solution for (4x+3)(4x+3)=196+4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+3)(4x+3)=196+4x^2 equation:



(4x+3)(4x+3)=196+4x^2
We move all terms to the left:
(4x+3)(4x+3)-(196+4x^2)=0
We get rid of parentheses
-4x^2+(4x+3)(4x+3)-196=0
We multiply parentheses ..
-4x^2+(+16x^2+12x+12x+9)-196=0
We get rid of parentheses
-4x^2+16x^2+12x+12x+9-196=0
We add all the numbers together, and all the variables
12x^2+24x-187=0
a = 12; b = 24; c = -187;
Δ = b2-4ac
Δ = 242-4·12·(-187)
Δ = 9552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9552}=\sqrt{16*597}=\sqrt{16}*\sqrt{597}=4\sqrt{597}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{597}}{2*12}=\frac{-24-4\sqrt{597}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{597}}{2*12}=\frac{-24+4\sqrt{597}}{24} $

See similar equations:

| 9(y+1)-11=130-2y | | 5x-11=2x+11 | | 5(y-2)-4y=10 | | 2x-5x=39 | | -2x+5=2(2x-1)-1 | | 24*x+2=6 | | 7x+6=-4 | | 3^-2k=81 | | -8x=18-9x | | 6x-(2x+3)=7x-45 | | 4(x-2)-x=-11 | | 8z+3=6+5z | | 7•(3x-6)-22x=110-11x-4•(17-x) | | -3a/5+7/10-9/2=1-9/10 | | 7x=9(x-4) | | *2t+3=3t+1 | | 12+z=2 | | 7•(3x-6)-22x=110-11x-4(17-x) | | 44=5m+3 | | 2x+46+120+x=166 | | 6(-1x+1)=-10 | | 2x=(5x-147) | | 45=h+19 | | 8n^2+41n+5=0 | | 2(3b-11)=8b-11 | | 20x+60=20 | | 33.3(2x-4)+5=-66.6(x+1) | | 12x+3=4x+7 | | 9.1-4w=9 | | -4x-4+5x=-6+90 | | 24-p=13 | | 7x+3(x-2)=4(x+1)-3 |

Equations solver categories